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ANALYSIS OF LIQUID DROPLET DEFORMATION IN A GAS FLOW 

V. V. Voronin UDC 532.529.6:541.18.053 

The small perturbation method is used to obtain equations describing the dynamics 
of a liquid droplet in a flow of ideal incompressible gas. The stability criteria 
and droplet disintegration time are determined. 

The principles of motion of a liquid droplet in a gas flow with some relative velocity 
are of great practical interest and have been actively studied for several decades. The pres- 
ent state of studies of liquid droplet interaction with a carrier flow is presented quite 
fully in the review [i]. In particular, analysis of numerous experimental data has estab- 
lished a qualitative classification of the main types of droplet disintegration in a gas flow, 
which develops upon increase of the Weber number We; at We ~ i00 droplet breakup is preceded 
by a "parachute"-type deformation which can be described within the framework of the approximate 
theory of flow over a deformed body. 

Linearization of the defining equations establishes that a droplet in a gas flow spreads 
in the transverse direction with the form of the flattened droplet being close to an ellipsoid 
of rotation. Spreading of the droplet, which is maintained in the process of deformation 
of the ellipsoid form, was studied in detail in a number of works [2-5], in which simple 
asymptotes were obtained for the transverse deformation together with stability criteria for 
the droplet. 

An analytical method for calculation of nonsteady-state motion and spreading of plane 
and axisymmetric drops of a viscous liquid in a gas flow was developed in [6]. This method 
is based on expansion of the Navier-Stokes equation in a small parameter, while the boundary 
problem is reduced to solution of an infinite system of differential equations with constant 
coefficients. In the absence of viscosity the system contains a finite number of equations 
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and permits an exact solution, which allows study of the spreading of a drop of ideal liquid 
with consideration of surface tension forces. A unique feature of the model is the use of 
an experimental pressure profile on the droplet boundary in analyzing the equations of liquid 
motion within the drop. 

Below we will present a solution of the problem of motion and deformation of a liquid 
drop in an ideal incompressible liquid within the framework of potential theory. Analysis 
of the kinematic and dynamic conditions will produce an infinite system of related quasilinear 
differential equations in the velocity and amplitudes of spherical harmonics of drop deforma- 
tion. The solution will be studied asymptotically. 

We will consider the deformation of an initially spherical drop of ideal incompressible 
liquid with density Pz, moving with a velocity U(t) in an ideal incompressible gas with dens- 
ity P0. We will use a relative system of spherical coordinates (r, 0, ~), the origin of which 
is attached to the moving center of gravity of the drop. The flow has axial symmetry, and 
the potentials of flows inside and outside the drop can be represented in the form of the 
sum of particular solutions of the Laplace equation for the internal and external regions: 

R s ~/~ B ~  
Oo(r, 0, t ) =  ~ o - ~ = - - U ,  2r" c o s 0 +  n=~ r~+~ P~(cos0), r > R ;  

(1) 
�9 ~ (r, 0, t) = ~ A~r~P~ (cos 0), r ~ R, 

n ~ 2  

where R is the droplet radius. The flow potential r consists of the main component @0, related 
to rectilinear motion of the sphere within the gas, and the potential ~I, describing the per- 
turbation of the flow produced by droplet deformation: the flow potential ~z is related only 
to droplet deformation. 

The boundary of the drop is a spherical surface with regular perturbation S(0, t) imposed 
thereon: the function F(r, O, t) which specifies the drop surface can be written as a series 
of spherical harmonics 

F (r, O, t) = r - -  R (t) -- ~ (0, t) ~- r - -  R - -  ~ ~.P,, (cos O) = O. 
rz~2 

(2) 

On the droplet surface the kinematic condition of nonpenetration of liquid through the 
boundary is satisfied, and can be written in the form 

0 F + ( v O ~ - - U f o i )  V F = 0 ,  i = 0 , 1  at F(r ,  0, t ) = 0 ,  (3 )  

(o 1 o) 
where V = Or ' r O0 is a differential operator and 6nk is the Kronecker symbol (6nk = i, 

if n = k; 6nk = 0 if n ~ k); the velocity U = U" (cos0, -sin0). 

In accordance with the methods of small perturbation theory we assume that ~ << R and 
@I, Cz << @0 ; then from the condition of constancy of drop volume it follows that in the ap- 
proximation linear in t/R, R(t) = R 0. 

The functions and their derivatives in Eq. (3) are expanded in Taylor series in the vicin- 
ity of the unperturbed drop boundary r = R 0. After dropping terms of second and higher order 
of smallness in S/R, we obtain the linearized kinematic equations 

OE atOt ~- 0 
at Or 

at r R0 (4) 

O~ Oqh 8%0 
- - - -  + V~ " ( W o - -  U ) - - ~  - -  0 

at Or Or 2 

We substitute in Eq. (4) expanded expressions for ~0, ~I, Cz, and ~; the equations are 
multiplied by Pj (cos 9) sin @ and integrated over the angle @ with limits [0, v]. The subscript 
j is then assigned integer values; with consideration of the orthogonality of Legendre poly- 
nomials, we obtain a system of relationships 
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A , = R ~  E --~-, n = l ,  2, 3 . . . .  
(5) [ _l_3nu ( )] 

B,, .... R~I-2 - - n ~ - ]  ~ - o  . 2 n + 3  2n--1  ' 

It should be noted that the second relationship of system (5) coincides exactly with 
the result of [7], obtained by a more complex and cumbersome method. 

On the drop surface there is a pressure discontinuity upon transit of the boundary along 
the normal thereto, caused by surface tension forces. In mathematical form this condition 
can be written as 

r~176 + ] I ' 9o - - -  UVq)o+ (VCOoY -- 9~ 8 ~  L Ot Ot + 2 (V~)-~ 
= + 1 

a at. F(r, O, t)=: O. ( 6 )  

Dynamic condition (6) can be linearized and reduces to the form 

' 0% 1 , 0% 
Oo / -- UV% + (Wo)'-'+ Z- 

t ot ot - - -  Uvch + V%V% ~- 

+ ~ ~ at Or% + (vm~ P' at 

Equat ion (7) i s  multiplied by Pj (cos O) sinO 

Jr- at r = Ro. 
(7) 

and integrated over angle 0 with limits [0, 
7]. By subsequent selection of j = n we obtain a system of related differential equations 
for ~n: 

( n - - l )  2 4n 3 + 6 n  2 -  1 2 ~  n + nv + v q_ @ u2~,~ 1 - -  n - -  
n ( n  + 1) 4n ~ -  1 (2n+3)(4M-- 1) 

( n ~ - l ) 2 ( n @ 2 ) ]  ( 2 n + l  i '~ ( 5 n + 2  
(2n+ l ) (2n+3)  -+-3u $ ._ t - - -  @3 u"+~)--u 2n 2n -}- 3 

n ) 9 uo[n(n+l) (n+2)  
2n--  1 ~,~-i @ - ~ -  " [ ( 2 n  + 3)(2n -/- 5) ~['~+~ q- 

- -  ~n+t-- 

n (n - -  1)(n - -  2) ] n ~ 3 
-+- (2n --  1)(2n -- 3) ~-2 4-. 4 +wen + 2. ~ + T u~8~.. = O, n=2 ,  3, 4 . . . .  

( 8 )  

Equation (8) is presented in dimensionless form, dedimensionalized with the factor drop 
let radius R0, initial droplet velocity U0, and gas density P0- Two parameters then appear 
in dynamic equation (8), the density ratio ~ = Pl/P0, and the Weber number We = 2p0U02R0/o. 

In an ideal gas the droplet braking equation is obtained from the theorem of momentum 
for a deformed body [8], i.e., 

dU d 
m --dr ~- --9o -~-  s~ (Do. (n. i) dS = 

d ! (Do. (cos 0 + 2~ cos 0 + ~' sin 0). sin 0d0. (9) = - 2 R po -TF 

Substituting in Eq. (9) the droplet mass m = 4/B~R03pz and the expression for the poten- 
tial ~0, we obtain the dimensionless braking equation in the form 

u ( 2 ~ + 1 - -  95 ~21 59 u~2=O. (I0) 

Equations (8) and (i0) completely describe the dynamics of motion of a deformed drop- 
let of ideal liquid in an ideal gas. The Cauchy problem for this system of equations is de- 
fined by the initial conditions 
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u ( 0 ) = - l ;  ~ (0) -- ~,~ (0) = 0, n = 2 ,  3 . . . . .  (11)  

and t h e  v a l u e s  o f  t h e  p a r a m e t e r s  v and We. E q u a t i o n  (8)  c o n s i s t s  o f  d i f f e r e n t i a l  e q u a t i o n s  
linear in the small perturbations ~n, the coefficients of which contain the velocity of drop- 
let motion. But since the velocity u(t) is defined by Eq. (i0) in terms of droplet deforma- 
tion, the system of equations (8), (i0) is nonlinear. An exact solution of the system can 
be obtained by computer iteration methods. 

We will consider the limiting case in which the density ratio v >> i. Equation (8) at 
n = 2 and Eq. (i0) with initial conditions (ii) can be written approximately in the form 

2tiv-- 9____u~2__ 9 u~2=O, (12)  
5 5 

7~'[2§ 56 27 t/2 § 21 
- -  u ~" ---- O. ( 1 3  ) 

"" 5 , 2 

We seek a solution for u(t) and $2(t) in the form of expansions in the small parameter 
- 1 .  

After substitution of these expansions in Eq. (13) and dropping of smaller terms, we obtain 
an ordinary differential equation for $0 (2) with solution 

$(2 ~ := D (exp ()~t) § exp (--;~t) - -  2); 

~2 4 ( 2 7  5 6 ) ;  D 3 1 

7v 5 We 4 v~, ~ 

(14) 

For %2 < 0 there is a pulsating motion of the drop boundary relative to the unperturbed posi- 
tion; for X 2 > 0 the perturbation increases, finally leading to droplet breakup. From the 
condition %2 = 0 we find the critical value of the Weber number We*, which defines the stabil- 
ity limit for the drop with respect to action of an air flow: 

280 
W e * -  - -  ~' 10,4, (15)  

27 

which agrees well with the experimental value Wee* = 12-14 presented in [9]. It should be 
noted that the value of We* obtained in Eq. (15) is independent of the density ratio v and 
refines earlier estimates [2, 5, 6]. 

Of special interest is the case of high Weber numbers We > We*, which corresponds to 
the increasing perturbation regime. For At << i, solution (14) can be expanded in a Taylor 
series and after dropping small terms we obtain Sa (~ = -3t2/4~. This approximate value of 
$2 (o) is substituted in Eq. (12) together with the expansion for the velocity u(t); equation 
of like terms leads to the explicit form of the function ~i = v-2. Consequently, in motion 
of a liquid drop in air it can be assumed that the drop velocity is constant to the accuracy 
of 0(~-2), i.e., u(t) = i. 

Analysis of the structure of Eq. (8) reveals that perturbations Sn, n = 3, 4, ..., are 
of order v72 and higher. Consequently, in the approximation linear in ~-i deformations of 
the droplet surface are described by the equation 

(0, t) 3t--2 P2 (cos 0). (16)  
4v 

Equation (16) was obtained with the assumption that ~(O, t) << i. However, extrapolation 
of solution (16) to the region of large deformations permits an estimate of droplet disintegra- 
tion times which are close to experimental values. 

The time interval from the moment of introduction of the liquid drop into the gas flow 
to the moment of contact of the upwind and downwind critical points on the droplet surface, 
corresponding to the disintegration time ~, is defined by the equation 

2 §  ~) § ~(~, ~) O. (17)  
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Substituting Eq. (16) in Eq. (17), we obtain a solution for the disintegration time ~ = 
2/~/3, or, in dimensionless form, 

T 
V-3 d //~ r~ 

3 ' d = 2 R ~  
(18) 

Solution (18) coincides with known estimates of droplet disintegration time in a gas 
flow [i, 2, i0]. 

NOTATION 

F, function describing droplet surface; Pn, first-order Legendre polynomials of the n-th 
sort; m, droplet mass; R0, droplet radius; RI, R2, major radii of curvature of droplet sur- 
face; (r, 0, @), coordinate system; U, U0, u, droplet motion velocity, initial value, and 
dimensionless velocity; We, We*, Weber number and critical value thereof; Pl, P0, v, liquid 
and gas densities, ratio thereof; ~l, ~0, flow potentials within and without droplet; ~, 
flow potential for motion of a sphere; $, ~n, perturbation of droplet boundary, amplitude of 
spherical harmonics; S, droplet surface area; ~, droplet disintegration time; o, surface ten- 
sion coefficient; n, vector of normal to droplet surface; i, unit vector in direction of drop- 
let motion. 
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